FG Security in Telecommunications

Taming the Robot: Sandboxing Android

Matthias Lange & Steffen Liebergeld, March 24th, 2011 {mlange, steffen}@sec.t-labs.tu-berlin.de

Outline

- Introduction
- Background
 - Security Analysis
 - Virtualization
- Microkernel Systems
- Sandboxing Android
- Conclusion

FG Security in Telecommunications

Introduction

Smartphone Market Challenges

- Loss of
 - Customer relation
 - Earnings
- Poorly written applications
- Security requirements for sensitive applications

Why Android?

- Open Source
- Custom 3rd party Apps
- Linux kernel

- Insufficient security policies
- Software not up-to-date
- Linux kernel
 - Outdated
 - Custom drivers

Recent Press Coverage

- Apps found to "leak" private data
- "Infected" Android Apps discovered in Android Market
 - Downloaded > 50.000 times
 - Sent private information to the attacker
- Android Trojan to send (expensive) premium SMS
- Study using static code analysis found 88 critical flaws in the kernel

FG Security in Telecommunications

Background

Security Analysis

- Android kernel at the lowest layer in software stack
 - Critical to availability and security
 - In TCB of all components
- Linux kernel ca. 14 million SLOC
 - Device drivers
 - Protocol stacks (e.g. network)
 - Filesystems
- Issues of monolithic kernels:
 - No in-kernel isolation
 - Any vulnerability is fatal
 - Insufficient access control mechanisms
 - ACLs, Users, Groups...

Virtualization

- Ability to run multiple instances of Android concurrently on one device
- Enables new opportunities for preventive security measures:
 - Out-of-band security analysis
 - Run security sensitive tasks besides Android (e.g. smartcard services, micropayment, eHealth)
 - Arbitrate hardware access
 - Multiple Androids with different security clearings

Virtualization - Problems

- Virtualization layer is new attack vector
- Smartphone CPUs not virtualizable
- Performance
- Needs to be done right!

FG Security in Telecommunications

Microkernel Systems

Microkernels

- Design principles
 - Implement only functionality in kernel that cannot be implemented at user level
 - Everything else in user space
 - Hardware enforced isolation boundaries.
 - Address spaces
 - Fast communication (IPC)
 - Secure access control mechanism (object capabilities)
- Improvements over monolithic kernels (such as Linux)
 - Fault isolation: limit scope of faults
 - Security: tailor TCB for each application individually and control of information flow
 - Scheduling: execute real-time applications beside non-real-time applications
- Ability to run deprivileged (para-virtualized) OS

L4Linux – Solving the Performance Problem

- Many Smart phone CPUs not natively virtualizable
 - Emulation (slow)
 - Binary translation (slow, huge effort)
 - De-privileging (good performance, but large initial porting effort)
- I 4I inux:
 - Port of the Linux kernel
 - Runs in its own address space
 - Binary compatible at Linux kernel API
 - Current version 2.6.37
 - Applicable to non-virtualizable platforms (ARM)
 - Good performance in most workloads

FG Security in Telecommunications

Sandboxing Android

L4Android

- Make L4Linux run Android userland
 - Port of Android kernel code to L4Linux
 - Packaging of Android userland into ramdisk
 - Lots and lots of debugging
- State of the Union:
 - L4Android works (proof of concept)
 - Eclair (2.1), Froyo (2.2) and Gingerbread (2.3) supported
 - Used as research vehicle
- Work in progress:
 - Virtualize mass storage, modem
 - Implement fast and stable graphics driver

L4Android.org

- Open Source Project
- See I4android.org for details

FG Security in Telecommunications

Demo

Conclusion

- Virtualization can help with security
 - (if implemented correctly)
- Microkernel forms a suitable basis
 - Provides strong isolation
 - Allows isolated high-security components (micropayment, smartcard, eHealth)
- L4Android
 - Efficient virtualized Android
 - Out-of-band security measures possible
 - Enables new business models

FG Security in Telecommunications

Questions?

Thank you!

